

Side-Channel Analysis on Blinded Regular Scalar Multiplications

Benoit Feix

Mylène Roussellet

Alexandre Venelli

Thales Communications & Security

- Elliptic Curve Cryptosystems (ECC) implemented on embedded devices by industrials
 - Use of international standards like NIST FIPS186-2 or SEC2
- We are looking for their resistance against non-profiled side-channel attacks
 - The attacker has no access to an open device
 - Template attacks \rightarrow talk « Online Template Attacks »
 - More restrictive from an adversary point of view, hence generally more difficult to mount on protected devices
 - We propose an new attack path on a industrially standard implementation of scalar multiplication algorithm resistant against previously known nonprofiled attacks

- Example of targeted implementation :
 - Elliptic curve NIST P-192
 - SSCA-resistance
 - Double-and-add-always
 - DSCA-resistance
 - Input point blinding : randomized projective coordinates
 - Exponent blinding : add a random multiple of the curve's order

 $\bullet \quad \boldsymbol{Q} = [\boldsymbol{d}]\boldsymbol{P}$

1. Background: side-channel attacks, ECC

2. Attack strategy

- **1. Weakness of the scalar blinding**
- 2. Attack with known input
- 3. Attack on a fully protected algorithm
- 3. Experimental results
- 4. Countermeasures
- 5. Conclusion

• Non-profiled side-channel analysis categories :

- Vertical correlation attacks
 - The original CPA from Brier et al. CHES 2004
- Horizontal correlation attacks
 - Attack against exponentiation with known inputs from Clavier et al. ICS 2010
- Vertical collision-correlation attacks
 - Attack against simple first-order masked AES from Clavier et al. CHES 2011
 - Attack against multiply-always exponentiation with blinded inputs from Witteman CT-RSA 2011
- Horizontal collision-correlation attacks
 - The classical Big-Mac attack from Walter CHES 2001
 - Attack against atomic implementations of ECC from Bauer et al. 2013
 - Attack against blinded exponentiations from Clavier et al. INDOCRYPT 2012

• SSCA resistance :

Regular algorithms

- Montgomery ladder, double-and-add-always, Joye's double-add, co-Z algorithms
- Unified addition formulas
 - Same formula used for both point addition and point doubling
 - Inefficient on standardized curves, only relevant for particular curve families : Edwards, Huff, ...
- Atomicity
 - The point addition and point doubling are computed using the same sequence of finite field operations, hence using dummy operations

Side-channel resistant scalar multiplication

- DSCA resistance
 - Scalar blinding
 - d' = d + r. #E
 - Add a random multiple of the curve's order to the secret scalar
 - Scalar splitting
 - Several methods : additive, multiplicative, Euclidean
 - The most efficient, the Euclidean, consists in $d' = \lfloor d/r \rfloor \cdot r + (d \mod r)$
 - Randomized projective points
 - An affine point P = (x, y) can be represented in Jacobian coordinates as $(\lambda^2 x, \lambda^3 y, \lambda)$ for any non-zero λ

Side-channel resistant scalar multiplication

Double-and-add-always

Algorithm 1 Double-and-add-always

Input: $d = (d_{k-1}, \ldots, d_0)_2 \in \mathbb{N}$ and $P \in E(\mathbb{F}_q)$ Output: Q = [d]P

1: $R_0 \leftarrow O$; $R_1 \leftarrow O$ 2: for j = k - 1 to 0 do 3: $R_0 \leftarrow [2]R_0$ 4: $b \leftarrow d_j$; $R_{1-b} \leftarrow R_0 + P$

- 5: end for
- 6: return Ro
- Randomized projective points
- Scalar blinding

1. Background: side-channel attacks, ECC

2. Attack strategy

- **1. Weakness of the scalar blinding**
- 2. Attack with known input
- 3. Attack on a fully protected algorithm
- 3. Experimental results
- 4. Countermeasures
- 5. Conclusion

Attack in 3 steps

- 1. Exploit weakness in the scalar blinding CM
 - ♦ Vertical attack → Middle part of the scalar
- 2. Recover the random used for the blinding
 - ♦ Horizontal attack → MS part of the scalar
- 3. Find the remaining bits
 - ♦ Vertical attack → LS part of the scalar

 A possible weakness in the scalar blinding technique has been noted by Joye, Ciet since CHES 2003

d' = d + r. #E

Example (secp160k1)

 $p = 2^{160} - 2^{32} - 538D_{16}$ [generalized] Mersenne prime $\#E = 01\ 00000000\ 00000000\ 0001B8FA\ 16DFAB9A\ CA16B6B3_{16}$

 $\Rightarrow d^* = d + r \# E = (r)_2 \parallel d_{\ell-1} \cdots d_{\ell-t} \parallel \text{ some bits}$

- Example taken from Marc Joye's slides on ECC in the presence of faults
- The same weakness has also been noted by Smart, Oswald, Page in IET Information Security 2008

• Both remark that the middle part of d' is correlated to the most significant part of d

However no key recovery attack path was found.
 Concerns were raised about the use of scalar blinding

• We provide a full key recovery attack exploiting this weakness and we show the limits of this CM

- Hasse's theorem:
 - $n = \#E(F_p)$ then $(\sqrt{p}-1)^2 \le n \le (\sqrt{p}+1)^2$
 - *n* is close to the value of *p*
- NIST FIPS186-2
 - Curves defined over the primes: $p_{192}, p_{224}, p_{256}, p_{384}, p_{521}$
 - Hence their orders are also sparse
- 3 categories of curves
 - Type-1: the order has a large pattern of ones,
 - Type-2: the order has a large pattern of zeros,
 - Type-3: the order has a combination of large patterns of both ones and zeros

- Notation: $1^{[a,b]} \rightarrow$ a pattern of 1 bits from the bit position *a* to *b*. Respectively for $0^{[a,b]}$
- Types of *k*-bit curve orders *n*:
 - Type-1: $n = 1^{[k-1,a]} + x$ with (k-1) > a and $0 \le x < 2^a$
 - Type-2: $n = 2^{k-1} + 0^{[k-2,a]} + x$ with (k-2) > a and $0 \le x < 2^a$
 - Type-3: $n = 1^{[k-1,a]} + 0^{[a-1,b]} + 1^{[b-1,c]} + x$ with (k-1) > a > b > c and $0 \le x < 2^{c}$
- Examples with standard curves:
 - Type-1: $n = 1^{[191,96]} + x$ (NIST P-192)
 - Type-2: $n = 2^{225} + 0^{[224,114]} + x$ (SECP224k1)
 - Type-3: $n = 1^{[255,224]} + 0^{[223,192]} + 1^{[191,128]} + x$ (NIST P-256)

Référence / date

- $r \in [1, 2^m 1]$ an *m*-bit random used for the scalar blinding
- Representations of r.n:
 - **Type-1:** $r \cdot n = \widetilde{r_1} \cdot 2^k + 1^{[k-1,a+m]} + x$
 - **Type-2:** $r \cdot n = r \cdot 2^k + 0^{[k-1,a+m]} + x$
 - Type-3: $r.n = \widetilde{r_1}.2^k + 1^{[k-1,a+m]} + \widetilde{r_0}.2^{a+m} + 0^{[a-1+m,b+m]} + \widetilde{r_1}.2^{b+m} + 1^{[b-1+m,c+m]} + x$
- The patterns of zeros and ones are reduced by m bits
- The values $\widetilde{r_1}$ and $\widetilde{r_0}$ are directly related to r and m
 - See paper for details

Adding the scalar to the random mask

• Representations of d' with the 3 types :

Type-1: d' = $(\widetilde{r_1} + 1) \cdot 2^k + d^{\lfloor k-1, a+m \rfloor} + x$ Type-2: d' = $r \cdot 2^k + d^{\lfloor k-1, a+m \rfloor} + x$ Type-3: d' = $(\widetilde{r_1} + 1) \cdot 2^k + d^{\lfloor k-1, a+m \rfloor} + \widetilde{r_0} \cdot 2^{a+m} + d^{\lfloor a-1+m, b+m \rfloor} + (\widetilde{r_1} + 1) \cdot 2^{b+m} + d^{\lfloor b-1+m, c+m \rfloor} + x$

• We clearly distinguish the non-masked part of d'

nformations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reservec

Thales Communications & Security

1. Background: side-channel attacks, ECC

2. Attack strategy

- **1.** Weakness of the scalar blinding
- 2. Attack with known input
- 3. Attack on a fully protected algorithm
- 3. Experimental results
- 4. Countermeasures
- 5. Conclusion

- First, simpler scenario, the input point is known, i.e. not masked
- Notations: $\{C^{(1)}, ..., C^{(N)}\}$ be *N* side-channel traces corresponding to the computations $[d'^{(i)}]P^{(i)}$ where $d'^{(i)} = d + r^{(i)} \cdot n$
- We consider random factors $r^{(i)} \in [1, 2^{m-1}]$

Goal: find the non-masked part of d'٠

Let δ be the bit-length of this non-masked part noted d =• $d^{[a,b]}$ with $\delta = (a-b)$

- Most significant part of d' unknown •
 - \rightarrow Vertical collision-correlation

Référence / date

- Collision in the double-and-add-always
- **If** $d_j = 0$
 - $R_{0} \leftarrow [2]R_{0}$ $R_{1} \leftarrow R_{0} + P$ $R_{1} \leftarrow [2]R_{0}$ (j + 1) turn

Notation: In(ECADD(j)) = In(ECDBL(j + 1))

• No collision if $d_j = 1$

- To find $\overline{d_j}$, $0 < j < \delta$:
 - Let t_0 be the time sample of the side-channel trace that corresponds to In(ECADD(j))
 - Construct $\Theta_0 = \left\{ C^{(i)}(t_0) \right\}_{1 \le i \le N}$
 - Let t_1 be the time sample of In(ECDBL(j+1))
 - Construct $\Theta_1 = \left\{ C^{(i)}(t_1) \right\}_{1 \le i \le N}$
 - Perform a collision-correlation $\rho(\Theta_0, \Theta_1)$
 - The correlation will be maximal when $\bar{d}_j = 0$

For Type-3 curves, repeat the attack on all non-masked parts of d'

- Goal: retrieve the random masks $r^{(i)}$
- The random values need to be retrieved from each traces $C^{(i)}$, $1 \le i \le N$
- The random is present in the most significant part of the blinded scalars
- As the input point is known
 - → Horizontal correlation attack

- To retrieve $r^{(i)}$:
 - Try all *m*-bit values of $r^{(i)}$
 - A guess on $r^{(i)}$ directly gives a guess on the most significant part of $d'^{(i)}$
 - Let \hat{r} be the guess on $r^{(i)}$. It gives a sequence of elliptic curve operations that should appear at the start of $C^{(i)}$. Since $P^{(i)}$ is known, the attacker can compute the sequence and obtain $\eta = 2(m + \delta)$ intermediate points
 - Choose a leakage function *L* (e.g. Hamming weight) and compute some predicted values derived from the η points T_j , $1 \le j \le \eta$
 - Construct $\Theta_1 = (\mathbf{l}_j)_{1 \le j \le \eta}$ with $l_j = L(T_j)$
 - Construct $\Theta_0 = (o_j)_{1 \le j\eta}$ with o_j the identified points of interest related to T_j on the trace $C^{(i)}$
 - Compute the correlation $\rho(\Theta_0, \Theta_1)$
 - If \hat{r} is correct, maximal correlation

•

Référence / date

- **Goal: recover the least significant part of** d ٠
- We already know
 - The most significant bits of d (Step 1)
 - The random values $r^{(i)}$, $1 \le i \le N$ (Step 2) •
- By guessing w unknown bits of d, we can compute • guessed blinded scalars $d^{i}(i)$
- As we know the input point ٠
 - \rightarrow Vertical correlation attack

Référence / date

- To find *w* unknown bits of *d* :
 - Guess *w* bits and compute the guessed blinded scalars $d^{i(i)}$, $1 \le i \le N$
 - Choose a leakage function L
 - For the *i*-th trace, compute predicted values $l_j^{(i)} = L(T_j^{(i)})$ from the $\eta = 2w$ intermediate points $T_i^{(i)}$
 - Construct $\Theta_1 = \left(l_j^{(i)}\right)_{i,j}$ with $1 \le i \le N$ and $1 \le j \le \eta$
 - Construct $\Theta_0 = \left(o_j^{(i)}\right)_{i,j}$ where $o_j^{(i)}$ is the time sample corresponding to the processing of $T_i^{(i)}$
 - **Compute the correlation** $\rho(\Theta_0, \Theta_1)$
 - Maximal correlation when the w guessed bits are correct

Référence / date

25 /

1. Background: side-channel attacks, ECC

2. Attack strategy

- **1.** Weakness of the scalar blinding
- 2. Attack with known input
- 3. Attack on a fully protected algorithm
- 3. Experimental results
- 4. Countermeasures
- 5. Conclusion

- On most state-of-the-art industrial implementations:
 - SPA-resistant algorithm
 - DSCA protections on the scalar <u>and</u> the input point

 We apply the same attack strategy in the case where the input is unknown, i.e. masked

- Step 1: Vertical collision-correlation
- Input point not needed
- Same attack in the unknown input point case

Attack step 2

- Step 2: Horizontal correlation not possible anymore
 - → Horizontal collision-correlation

Attack step 2

Informations confidentielles / propriété de Thales. Tous droits réservés. / Thales confidential / proprietary information. All rights reserved

Collision in the double-and-add-always

If
$$d_j = 1$$
 j turnIf $d_j = 0$ $\cdot R_0 \leftarrow [2]R_0$ j turn $\cdot R_0 \leftarrow [2]R_0$ $\cdot R_0 \leftarrow R_0 + P$ collision $\cdot R_1 \leftarrow R_0 + P$ $\cdot R_0 \leftarrow [2]R_0$ $(j+1)$ turn $\cdot R_0 \leftarrow [2]R_0$

To retrieve $r^{(i)}$:

- Try all possible *m*-bit values of $r^{(i)}$ •
- Guessed random $\hat{r} \rightarrow$ sequence of $(m + \delta)$ guessed EC operations •

• Construct
$$\Theta_0 = \left\{ C^{(i)}\left(t_0^X(j)\right), C^{(i)}\left(t_0^Y(j)\right), C^{(i)}\left(t_0^Z(j)\right) \right\}_{1 \le j \le (m+\delta)}$$
 where
 $t_0^X(j) = \begin{cases} Out^X(ECADD(j)) \text{ if } \widehat{d}'_j = 1\\ In^X(ECADD(j)) \text{ if } \widehat{d}'_j = 0 \end{cases}$

- Construct $\Theta_1 = \left\{ C^{(i)}\left(t_1^X(j)\right), C^{(i)}\left(t_1^Y(j)\right), C^{(i)}\left(t_1^Z(j)\right) \right\}_{1 \le j \le (m+\delta)}$ where • $t_1^X(j) = In^X(ECDBL(j+1))$
- Compute the correlation $\rho(\Theta_0, \Theta_1)$ ٠
 - Correctly guessed \hat{r} gives the maximal correlation

- Step 3: Vertical correlation not possible anymore
 - → Vertical collision-correlation

- To find *w* unknown bits of *d* :
 - Guess *w* bits and compute the guessed blinded scalars $d^{i(i)}$, $1 \le i \le N$
 - Construct collision vectors Θ_0 and Θ_1 similarly to the previous attack step. Consider that $u \le \delta$ bits of d are already known, the vectors size is then (m + u + w)N
 - Compute the correlation $\rho(\Theta_0, \Theta_1)$
 - Maximal correlation for the correctly guessed w bits

- **1. Background: side-channel attacks, ECC**
- 2. Attack strategy
 - **1.** Weakness of the scalar blinding
 - 2. Attack with known input
 - 3. Attack on a fully protected algorithm
- 3. Experimental results
- 4. Countermeasures
- 5. Conclusion

- Simulated power traces considering the following implementation
 - NIST P-192
 - Double-and-add-always
 - Jacobian projective coordinates with formulas add-2007-bl and dbl-2007-bl from
 - Bernstein, D.J., Lange, T.: Explicit-formulas database. http://hyperelliptic.org/EFD/g1p/auto-shortw.html
 - Random sizes of 8-bit and 16-bit to obtain reasonable computational times and to repeat our simulations for consistency
 - We consider the Hamming weight of 32-bit words as leakage model
 - Gaussian noise with standard deviation σ is added
 - The Pearson coefficient is used

Référence / date

- **Step 1: Vertical collision-correlation**
 - Tested using sets of 500 and 1000 traces

٠

- Step 2: Horizontal correlation
 - Only need one trace
 - Success rate depends on m and σ
 - Larger random gives better results but larger computational time

- Step 3: Vertical correlation
 - Tested using sets of 500 and 1000 traces

• Summary

Attack steps	N	m	Standard Deviation σ					
			0	1	2	5	10	15
Vertical	500	33 <u>4</u> 6	1.0	1.0	1.0	1.0	0.88	0.74
collision-correlation	1000	200	1.0	1.0	1.0	1.0	0.99	0.76
Horizontal	177	8	1.0	1.0	1.0	1.0	1.0	0.77
correlation	1411	16	1.0	1.0	1.0	1.0	1.0	0.85
Vertical	500	-	1.0	1.0	1.0	1.0	0.64	0.42
correlation	1000		1.0	1.0	1.0	1.0	0.84	0.52

Table 1. Success rate for known input points.

- Step 1: Vertical collision-correlation
 - Same as in the previous scenario
- Step 2: Horizontal collision-correlation
 - Success rate drops quicker than other attacks due to the limited number of time samples
 - Contrary to vertical attacks, this number is fixed regardless of the noise level
- Step 3: Vertical collision-correlation
 - Very efficient even for high σ

• Summary

	A	N		Standard Deviation σ					
Attack steps	IN	m	0	1	2	5	10	15	
	Horizontal	123	8	1.0	1.0	0.9	0.1	0.02	0.01
	collision-correlation	-	16	1.0	1.0	0.95	0.23	0.10	0.02
	Vertical	500	15	1.0	1.0	1.0	1.0	1.0	0.97
	collision-correlation	1000	2	1.0	1.0	1.0	1.0	1.0	0.99

Table 2. Success rate for unknown input points.

Unknown input point

- Full scalar recovery for noise levels up to $\sigma \approx 5$
- Known input point
 - Full scalar recovery for noise levels up to $\sigma \approx 10$

- **1. Background: side-channel attacks, ECC**
- 2. Attack strategy
 - **1.** Weakness of the scalar blinding
 - 2. Attack with known input
 - 3. Attack on a fully protected algorithm
- **3. Experimental results**
- 4. Countermeasures
- 5. Conclusion

Scalar splitting

- Euclidean splitting is the best choice
- Often disregarded by developers as it is less efficient than scalar blinding with small random sizes
- Scalar blinding with larger random
 - The choice for the size *m* of the random depends on
 - The largest pattern size amongst all curves' order implemented
 - The maximal brute force capability of the attacker
 - Depending on this new value for m, the overhead needs to be compared to the overhead of the Euclidean splitting (1.5)
 - **Atomic algorithm and unified formulas**
 - Most state-of-the-art implementations have been attacked by Bauer et al. SAC 2013

- Our attack paths also apply to
 - Montgomery ladder
 - Joye's double-add
- Only modification is on the choice of the collision variables that differs for each algorithm
- Does not work on the right-to-left binary algorithm lastly improved in
 - Joye, M., Karroumi, M.: Memory-efficient fault countermeasures
 Smart Card Research and Advanced Applications, 2011
- **Details in the extended version of the paper**
 - ePrint 2014/191

- **1. Background: side-channel attacks, ECC**
- 2. Attack strategy
 - **1.** Weakness of the scalar blinding
 - 2. Attack with known input
 - 3. Attack on a fully protected algorithm
- **3. Experimental results**
- 4. Countermeasures
- 5. Conclusion

- We exploited a weakness in the scalar blinding to mount a full key-recovery attack on state-of-the-art protected scalar multiplications
- Our attack paths have good success rates even for high noise levels
 - Known input: up to $\sigma \approx 10$
 - Unknown input: up to $\sigma \approx 5$
- Safe solution:
 - Any regular algorithm
 - Any input point randomization CM
 - Use Euclidean splitting as scalar randomization CM

Thanks for your attention

Thales Communications & Security