

# Side-Channel Analysis on Blinded Regular Scalar Multiplications 

Benoit Feix<br>Mylène Roussellet<br>Alexandre Venelli

- Elliptic Curve Cryptosystems (ECC) implemented on embedded devices by industrials
. Use of international standards like NIST FIPS186-2 or SEC2
- We are looking for their resistance against non-profiled side-channel attacks
- The attacker has no access to an open device
- Template attacks $\rightarrow$ talk « Online Template Attacks »
- More restrictive from an adversary point of view, hence generally more difficult to mount on protected devices
- We propose an new attack path on a industrially standard implementation of scalar multiplication algorithm resistant against previously known nonprofiled attacks


## - Example of targeted implementation :

- Elliptic curve NIST P-192
- SSCA-resistance
- Double-and-add-always
- DSCA-resistance
- Input point blinding : randomized projective coordinates
- Exponent blinding : add a random multiple of the curve's order

$$
\text { - } Q=[d] P
$$

## 1. Background: side-channel attacks, ECC

2. Attack strategy
3. Weakness of the scalar blinding
4. Attack with known input
5. Attack on a fully protected algorithm
6. Experimental results
7. Countermeasures
8. Conclusion

## - Non-profiled side-channel analysis categories :

- Vertical correlation attacks
- The original CPA from Brier et al. CHES 2004
- Horizontal correlation attacks
- Attack against exponentiation with known inputs from Clavier et al. ICS 2010
- Vertical collision-correlation attacks
- Attack against simple first-order masked AES from Clavier et al. CHES 2011
- Attack against multiply-always exponentiation with blinded inputs from Witteman CT-RSA 2011
- Horizontal collision-correlation attacks
- The classical Big-Mac attack from Walter CHES 2001
- Attack against atomic implementations of ECC from Bauer et al. 2013
- Attack against blinded exponentiations from Clavier et al. INDOCRYPT 2012


## - SSCA resistance :

- Regular algorithms
- Montgomery ladder, double-and-add-always, Joye's double-add, co-Z algorithms
- Unified addition formulas
- Same formula used for both point addition and point doubling
- Inefficient on standardized curves, only relevant for particular curve families : Edwards, Huff, ...
- Atomicity
- The point addition and point doubling are computed using the same sequence of finite field operations, hence using dummy operations


## DSCA resistance

- Scalar blinding
- $\quad d^{\prime}=d+r . \# E$
- Add a random multiple of the curve's order to the secret scalar
- Scalar splitting
- Several methods : additive, multiplicative, Euclidean
- The most efficient, the Euclidean, consists in $d^{\prime}=\lfloor d / r\rfloor \cdot r+(d \bmod r)$
- Randomized projective points
- An affine point $P=(x, y)$ can be represented in Jacobian coordinates as ( $\lambda^{2} x, \lambda^{3} y, \lambda$ ) for any non-zero $\lambda$

Double-and-add-always

| Algorithm 1 Double-and-add-always |
| :--- |
| Input: $d=\left(d_{k-1}, \ldots, d_{0}\right)_{2} \in \mathbb{N}$ and $\boldsymbol{P} \in E\left(\mathbb{F}_{q}\right)$ |
| Output: $\boldsymbol{Q}=[d] \boldsymbol{P}$ |
| 1: $\boldsymbol{R}_{\mathbf{0}} \leftarrow \boldsymbol{O} ; \boldsymbol{R}_{\mathbf{1}} \leftarrow \boldsymbol{O}$ |
| 2: for $j=k-1$ to 0 do |
| 3: $\quad \boldsymbol{R}_{\mathbf{0}} \leftarrow[2] \boldsymbol{R}_{\mathbf{0}}$ |
| 4: $\quad b \leftarrow d_{j} ; \boldsymbol{R}_{\mathbf{1 - b}} \leftarrow \boldsymbol{R}_{\mathbf{0}}+\boldsymbol{P}$ |
| 5: end for |
| 6: return $\boldsymbol{R}_{\mathbf{0}}$ |

- Randomized projective points
- Scalar blinding


## 1. Background: side-channel attacks, ECC

2. Attack strategy
3. Weakness of the scalar blinding
4. Attack with known input
5. Attack on a fully protected algorithm
6. Experimental results
7. Countermeasures
8. Conclusion

## Attack in 3 steps

1. Exploit weakness in the scalar blinding CM

- Vertical attack $\boldsymbol{\rightarrow}$ Middle part of the scalar

2. Recover the random used for the blinding

- Horizontal attack $\rightarrow$ MS part of the scalar

3. Find the remaining bits

- Vertical attack $\rightarrow$ LS part of the scalar
- A possible weakness in the scalar blinding technique has been noted by Joye, Ciet since CHES 2003

$$
d^{\prime}=d+r
$$

## Example (secp160k1)

$p=2^{160}-2^{32}-538 D_{16} \quad$ [generalized] Mersenne prime
$\# E=0100000000000000000001$ B8FA 16DFAB9A CA16B6B3 16
$\Rightarrow d^{*}=d+r \# E=(r)_{2}\left\|d_{\ell-1} \cdots d_{\ell-t}\right\|$ some bits

- Example taken from Marc Joye's slides on ECC in the presence of faults
- The same weakness has also been noted by Smart, Oswald, Page in IET Information Security 2008
- Both remark that the middle part of $d^{\prime}$ is correlated to the most significant part of $d$
- However no key recovery attack path was found. Concerns were raised about the use of scalar blinding
- We provide a full key recovery attack exploiting this weakness and we show the limits of this CM


## - Hasse's theorem:

- $n=\# E\left(F_{p}\right)$ then $(\sqrt{p}-1)^{2} \leq n \leq(\sqrt{p}+1)^{2}$
- $n$ is close to the value of $p$
- NIST FIPS186-2
- Curves defined over the primes: $p_{192}, p_{224}, p_{256}, p_{384}, p_{521}$
- Hence their orders are also sparse
- 3 categories of curves
- Type-1: the order has a large pattern of ones,
- Type-2: the order has a large pattern of zeros,
- Type-3: the order has a combination of large patterns of both ones and zeros

Notation: ${ }^{[a, b]} \rightarrow$ a pattern of 1 bits from the bit position $a$ to $b$. Respectively for $0^{[a, b]}$

## Types of $k$-bit curve orders $n$ :

- Type-1: $n=1^{[k-1, a]}+x$ with $(k-1)>a$ and $0 \leq x<2^{a}$
- Type-2: $n=2^{k-1}+0^{[k-2, a]}+x$ with $(k-2)>a$ and $0 \leq x<2^{a}$
- Type-3: $n=1^{[k-1, a]}+0^{[a-1, b]}+1^{[b-1, c]}+x$ with $(k-1)>a>b>$ $c$ and $0 \leq x<2^{c}$
- Examples with standard curves:
- Type-1: $n=1^{[191,96]}+x$ (NIST P-192)
- Type-2: $n=2^{225}+0^{[224,114]}+x$ (SECP224k1)
- Type-3: $n=1^{[255,224]}+0^{[223,192]}+1^{[191,128]}+x$ (NIST P-256)
- $\quad r \in\left[1,2^{m}-1\right]$ an $m$-bit random used for the scalar blinding
- Representations of r.n:
- Type-1: $r . n=\widetilde{r_{1}} \cdot 2^{k}+1^{[k-1, a+m]}+x$
- Type-2: r. $n=r .2^{k}+0^{[k-1, a+m]}+x$
- Type-3: $r . n=\widetilde{r_{1}} \cdot 2^{k}+\mathbf{1}^{[k-1, a+m]}+\widetilde{r_{0}} \cdot 2^{a+m}+0^{[a-1+m, b+m]}+$ $\widetilde{r_{1}} \cdot 2^{b+m}+1^{[b-1+m, c+m]}+x$
- The patterns of zeros and ones are reduced by $m$ bits
- The values $\widetilde{r_{1}}$ and $\widetilde{r_{0}}$ are directly related to $r$ and $m$
- See paper for details


## - Representations of $d^{\prime}$ with the 3 types:

- Type-1: $\mathrm{d}^{\prime}=\left(\widetilde{r_{1}}+1\right) \cdot 2^{k}+\mathrm{d}^{[k-1, a+m]}+x$ Non-masked
- Type-2: $\mathrm{d}^{\prime}=r .2^{k}+\mathrm{d}^{[k-1, a+m]}+x$
- Type-3: $\mathrm{d}^{\prime}=\left(\widetilde{r_{1}}+1\right) 2^{k}+\sqrt{[k-1, a+m]}-\widetilde{r_{0}} \cdot 2^{a+m}+a^{[a-1+m, b+m)}+$ $\left(\widetilde{r_{1}}+1\right) \cdot 2^{b+m}+d^{[b-1+m, c+m]}+x$
- We clearly distinguish the non-masked part of $d^{\prime}$


## 1. Background: side-channel attacks, ECC

2. Attack strategy
3. Weakness of the scalar blinding
4. Attack with known input
5. Attack on a fully protected algorithm
6. Experimental results
7. Countermeasures
8. Conclusion

- First, simpler scenario, the input point is known, i.e. not masked
- Notations: $\left\{C^{(1)}, \ldots, C^{(N)}\right\}$ be $N$ side-channel traces corresponding to the computations $\left[d^{\prime(i)}\right] P^{(i)}$ where $d^{\prime(i)}=$ $d+r^{(i)} \cdot n$
- We consider random factors $r^{(i)} \in\left[1,2^{m-1}\right]$
- Goal: find the non-masked part of $d^{\prime}$
- Let $\delta$ be the bit-length of this non-masked part noted $\bar{d}=$ $d^{[a, b]}$ with $\delta=(a-b)$
- Most significant part of $d^{\prime}$ unknown
- $\rightarrow$ Vertical collision-correlation
- Collision in the double-and-add-always
- If $d_{j}=0$

| $\cdot$ | $R_{0} \leftarrow[2] R_{0}$ | $j$ turn |
| :--- | :--- | :---: |
| - | $R_{1} \leftarrow R_{0}+P$ | collision |
| - | $R_{0} \leftarrow[2] R_{0}$ | $(j+1)$ turn |

Notation:
$\operatorname{In}(E C A D D(j))=\operatorname{In}(E C D B L(j+1))$

To find $\bar{d}_{j}, 0<j<\delta$ :

- Let $t_{0}$ be the time sample of the side-channel trace that corresponds to $\operatorname{In}(\operatorname{ECADD}(j))$
- Construct $\Theta_{0}=\left\{\mathbf{C}^{(\mathbf{i})}\left(\mathbf{t}_{0}\right)\right\}_{1 \leq i \leq N}$
- Let $t_{1}$ be the time sample of $\operatorname{In}(E C D B L(j+1))$
- Construct $\Theta_{\mathbf{1}}=\left\{\mathbf{C}^{(\mathbf{i})}\left(\mathbf{t}_{\mathbf{1}}\right)\right\}_{1 \leq i \leq N}$
- Perform a collision-correlation $\boldsymbol{\rho}\left(\Theta_{0}, \Theta_{1}\right)$
- The correlation will be maximal when $\bar{d}_{j}=0$
- For Type-3 curves, repeat the attack on all non-masked parts of $d^{\prime}$
- Goal: retrieve the random masks $r^{(i)}$
- The random values need to be retrieved from each traces $C^{(i)}, 1 \leq i \leq N$
- The random is present in the most significant part of the blinded scalars
- As the input point is known
- $\rightarrow$ Horizontal correlation attack


## To retrieve $r^{(i)}$ :

- Try all $\boldsymbol{m}$-bit values of $r^{(i)}$
- A guess on $r^{(i)}$ directly gives a guess on the most significant part of $d^{\prime(i)}$
- Let $\hat{r}$ be the guess on $r^{(i)}$. It gives a sequence of elliptic curve operations that should appear at the start of $C^{(i)}$. Since $P^{(i)}$ is known, the attacker can compute the sequence and obtain $\eta=$ $2(m+\delta)$ intermediate points
- Choose a leakage function $L$ (e.g. Hamming weight) and compute some predicted values derived from the $\eta$ points $T_{j}, 1 \leq j \leq \eta$
- Construct $\Theta_{1}=\left(\mathrm{l}_{\mathrm{j}}\right)_{1 \leq \mathrm{j} \leq \eta}$ with $l_{j}=L\left(T_{j}\right)$
- Construct $\Theta_{0}=\left(\mathbf{o}_{\mathbf{j}}\right)_{1 \leq j \eta}$ with $o_{j}$ the identified points of interest related to $T_{j}$ on the trace $C^{(i)}$
- Compute the correlation $\rho\left(\Theta_{0}, \Theta_{1}\right)$
- If $\hat{r}$ is correct, maximal correlation
- Goal: recover the least significant part of $d$
- We already know
- The most significant bits of $d$ (Step 1)
- The random values $r^{(i)}, \mathbf{1} \leq \boldsymbol{i} \leq N$ (Step 2)
- By guessing $w$ unknown bits of $d$, we can compute guessed blinded scalars $\widehat{d^{\prime(i)}}$
- As we know the input point
- $\rightarrow$ Vertical correlation attack

Type-1

## - To find $w$ unknown bits of $d$ :

- Guess $\boldsymbol{w}$ bits and compute the guessed blinded scalars $\widehat{d^{(i)}, 1 \leq}$ $i \leq N$
- Choose a leakage function $L$
- For the $i$-th trace, compute predicted values $l_{j}^{(i)}=L\left(T_{j}^{(i)}\right)$ from the $\eta=2 w$ intermediate points $T_{j}^{(i)}$
- Construct $\Theta_{1}=\left(\boldsymbol{l}_{j}^{(i)}\right)_{i, j}$ with $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{N}$ and $1 \leq \boldsymbol{j} \leq \boldsymbol{\eta}$
- Construct $\Theta_{0}=\left(\mathbf{o}_{\mathbf{j}}^{(i)}\right)_{\mathrm{i}, \mathrm{j}}$ where $\mathbf{o}_{\mathbf{j}}^{(\mathrm{i})}$ is the time sample corresponding to the processing of $T_{j}^{(i)}$
- Compute the correlation $\boldsymbol{\rho}\left(\Theta_{0}, \Theta_{1}\right)$
- Maximal correlation when the $w$ guessed bits are correct

1. Background: side-channel attacks, ECC
2. Attack strategy
3. Weakness of the scalar blinding
4. Attack with known input
5. Attack on a fully protected algorithm
6. Experimental results
7. Countermeasures
8. Conclusion

- On most state-of-the-art industrial implementations:
- SPA-resistant algorithm
- DSCA protections on the scalar and the input point
- We apply the same attack strategy in the case where the input is unknown, i.e. masked
- Step 1: Vertical collision-correlation
- Input point not needed
- Same attack in the unknown input point case

- Step 2: Horizontal correlation not possible anymore
- $\rightarrow$ Horizontal collision-correlation



## - Collision in the double-and-add-always

- If $d_{j}=1$

| - | $R_{0} \leftarrow[2] R_{0}$ | $j$ turn |
| :--- | :--- | :--- |
| - | $R_{0}$ | $\leftarrow R_{0}+P$ |
| - collision |  |  |
|  | $\left.R_{0} \leftarrow[2] R_{0}\right)$ | $(j+1)$ turn |

- If $d_{j}=0$
$\qquad$
號


## - To retrieve $r^{(i)}$ :

- Try all possible $\boldsymbol{m}$-bit values of $r^{(i)}$
- Guessed random $\hat{r} \rightarrow$ sequence of $(\boldsymbol{m}+\boldsymbol{\delta})$ guessed EC operations
- Construct $\Theta_{0}=\left\{C^{(i)}\left(t_{0}^{X}(j)\right), C^{(i)}\left(t_{0}^{Y}(j)\right), C^{(i)}\left(t_{0}^{Z}(j)\right)\right\}_{1 \leq j \leq(m+\delta)}$ where

$$
t_{0}^{X}(j)=\left\{\begin{array}{c}
o u t^{X}(\operatorname{ECADD}(j)) \text { if } \widehat{d_{j}^{\prime}}=1 \\
\operatorname{In}^{X}(\operatorname{ECADD}(j)) \text { if } \widehat{d_{j}^{\prime}}=0
\end{array}\right.
$$

- Construct $\Theta_{1}=\left\{C^{(i)}\left(t_{1}^{X}(j)\right), C^{(i)}\left(t_{1}^{Y}(j)\right), C^{(i)}\left(t_{1}^{Z}(j)\right)\right\}_{1 \leq j \leq(m+\delta)}$ where

$$
t_{1}^{X}(j)=\operatorname{In}^{X}(E C D B L(j+1))
$$

- Compute the correlation $\boldsymbol{\rho}\left(\boldsymbol{\Theta}_{\mathbf{0}}, \boldsymbol{\Theta}_{\mathbf{1}}\right)$
- Correctly guessed $\hat{r}$ gives the maximal correlation
- Step 3: Vertical correlation not possible anymore
- $\quad \rightarrow$ Vertical collision-correlation



## - To find $w$ unknown bits of $d$ :

- Guess $\boldsymbol{w}$ bits and compute the guessed blinded scalars $\widehat{d^{(i)},}, 1 \leq$ $i \leq N$
- Construct collision vectors $\Theta_{0}$ and $\Theta_{1}$ similarly to the previous attack step. Consider that $u \leq \delta$ bits of $d$ are already known, the vectors size is then $(m+u+w) N$
- Compute the correlation $\boldsymbol{\rho}\left(\boldsymbol{\Theta}_{0}, \Theta_{1}\right)$
- Maximal correlation for the correctly guessed $w$ bits


## Agenda

## 1. Background: side-channel attacks, ECC

2. Attack strategy
3. Weakness of the scalar blinding
4. Attack with known input
5. Attack on a fully protected algorithm
6. Experimental results
7. Countermeasures
8. Conclusion

- Simulated power traces considering the following implementation
- NIST P-192
- Double-and-add-always
- Jacobian projective coordinates with formulas add-2007-bl and dbl-2007-bl from

> Bernstein, D.J., Lange, T.: Explicit-formulas database. http://hyperelliptic.org/EFD/g1p/auto-shortw.html

- Random sizes of 8-bit and 16-bit to obtain reasonable computational times and to repeat our simulations for consistency
- We consider the Hamming weight of 32-bit words as leakage model
- Gaussian noise with standard deviation $\sigma$ is added


## - Step 1: Vertical collision-correlation

- Tested using sets of 500 and 1000 traces



## - Step 2: Horizontal correlation

- Only need one trace
- Success rate depends on $m$ and $\sigma$
- Larger random gives better results but larger computational time
- Step 3: Vertical correlation
- Tested using sets of 500 and 1000 traces

| Attack steps | $\boldsymbol{N}$ | $\boldsymbol{m}$ | $\mathbf{c}$ | Standard Deviation $\boldsymbol{\sigma}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{5}$ | $\mathbf{1 0}$ | $\mathbf{1 5}$ |
| Vertical | 500 | - | 1.0 | 1.0 | 1.0 | 1.0 | 0.88 | 0.74 |
| collision-correlation | 1000 | - | 1.0 | 1.0 | 1.0 | 1.0 | 0.99 | 0.76 |
| Horizontal | - | 8 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.77 |
| correlation | - | 16 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.85 |
| Vertical | 500 | - | 1.0 | 1.0 | 1.0 | 1.0 | 0.64 | 0.42 |
| correlation | 1000 | - | 1.0 | 1.0 | 1.0 | 1.0 | 0.84 | 0.52 |

Table 1. Success rate for known input points.

## - Step 1: Vertical collision-correlation

- Same as in the previous scenario
- Step 2: Horizontal collision-correlation
- Success rate drops quicker than other attacks due to the limited number of time samples
- Contrary to vertical attacks, this number is fixed regardless of the noise level
- Step 3: Vertical collision-correlation
- Very efficient even for high $\sigma$

| Attack steps | $\boldsymbol{N}$ | $\boldsymbol{m}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{5}$ | $\mathbf{1 0}$ | $\mathbf{1 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1.0 | 1.0 | 0.9 | 0.1 | 0.02 | 0.01 |
| collision-correlation | - | 16 | 1.0 | 1.0 | 0.95 | 0.23 | 0.10 | 0.02 |
| Vertical | 500 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.97 |
| collision-correlation | 1000 | - | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.99 |

Table 2. Success rate for unknown input points.

- Unknown input point
- Full scalar recovery for noise levels up to $\sigma \approx 5$
- Known input point
- Full scalar recovery for noise levels up to $\sigma \approx 10$

1. Background: side-channel attacks, ECC
2. Attack strategy
3. Weakness of the scalar blinding
4. Attack with known input
5. Attack on a fully protected algorithm
6. Experimental results
7. Countermeasures
8. Conclusion

## - Scalar splitting

- Euclidean splitting is the best choice
- Often disregarded by developers as it is less efficient than scalar blinding with small random sizes
- The choice for the size $m$ of the random depends on
- The largest pattern size amongst all curves' order implemented
- The maximal brute force capability of the attacker
- Depending on this new value for $m$, the overhead needs to be compared to the overhead of the Euclidean splitting (1.5)
- Atomic algorithm and unified formulas


## - Scalar blinding with larger random

- Most state-of-the-art implementations have been attacked by Bauer et al. SAC 2013
- Our attack paths also apply to
- Montgomery ladder
- Joye's double-add
- Only modification is on the choice of the collision variables that differs for each algorithm
- Does not work on the right-to-left binary algorithm lastly improved in
- Joye, M., Karroumi, M.: Memory-efficient fault countermeasures - Smart Card Research and Advanced Applications, 2011
- Details in the extended version of the paper
- ePrint 2014/191

1. Background: side-channel attacks, ECC
2. Attack strategy
3. Weakness of the scalar blinding
4. Attack with known input
5. Attack on a fully protected algorithm
6. Experimental results
7. Countermeasures
8. Conclusion

- We exploited a weakness in the scalar blinding to mount a full key-recovery attack on state-of-the-art protected scalar multiplications
- Our attack paths have good success rates even for high noise levels
- Known input: up to $\sigma \approx 10$
- Unknown input: up to $\sigma \approx 5$
- Safe solution:
- Any regular algorithm
- Any input point randomization CM
- Use Euclidean splitting as scalar randomization CM


## Thanks for your attention

(1L) gemalto THALES

